Pubblicato il

Come dimostrare, in 5 mosse, la perpendicolarità tra tangente e raggio.

1. Testo

Dimostra, con l’utilizzo delle derivate, che la tangente a una circonferenza è perpendicolare al raggio nel punto di tangenza. 

2. Prerequisiti

Per poter affrontare al meglio questa tipologia di esercizio dovrai conoscere:

  • il concetto e la definizione di derivata
  • l’equazione della circonferenza
  • come ricavare le formule inverse

3. Soluzione

Primo step

Consideriamo l’equazione generica di una circonferenza di centro C(0,0) e raggio r : 

\(x^{2}+y^{2}=r^{2}\)

Secondo step

Ricaviamo la y in modo da poter esplicitare le coordinate di un punto sulla circonferenza: 

\( y=± \sqrt{r^2 − x^2 } \) 

Si ricordi che la circonferenza non è una funzione e, per tale motivo, nelle procedure di calcolo a seguire è stata scelta, per comodità, la semicirconferenza superiore.

Terzo step

Consideriamo un punto generico P sulla circonferenza, questo avrà coordinate: 

\( P(x_P, \sqrt{r^2 − x_P^2 }) \)

Figura 1. Rappresentazione sul piano cartesiano del problema proposto. Si ricordi che la circonferenza non è una funzione e, per tale motivo, nelle procedure di calcolo è stata scelta la semicirconferenza superiore.
Quarto step

Calcoliamo ora il coefficiente angolare del raggio della circonferenza congiungente il centro O con il punto P: 

\( m_{OP} =\frac{\Delta {y}}{\Delta {x}} =\frac{{y_P}-y_O}{{x_P}-x_O}=\frac{\sqrt{r^2- x_P^2}}{x_P}\)

Quinto e ultimo step

Ricordiamo il significato di derivata di una funzione in un punto.

Il significato geometrico di derivata in un punto è il coefficiente angolare della retta tangente al grafico della funzione in quel punto.  

Svolgiamo quindi la derivata della funzione rappresentante la circonferenza  e calcoliamola nel punto \( P(x_P, \sqrt{r^2 − x_P^2 }) \) per dimostrare che la retta tangente alla circonferenza in quel punto è perpendicolare al raggio.  

\(\frac{d f(x)}{dx}=\frac{d \left(\sqrt{r^{2}-x^{2}}\right)}{d x}=\frac{d\left(r^{2}-x^{2}\right)^{\frac{1}{2}}}{d x}= \)

\(\frac{1}{2}(-2 x)\left(r^{2}-x^{2}\right)^{-\frac{1}{2}}=\frac{-x}{\sqrt{r^{2}-x^{2}}}\)

Calcoliamo ora la derivata nel punto di ascissa \( x = x_P\) 

\( m_{perp-OP} =\frac{d {f (x_{P})}}{d {x}}=\frac{- x_{P}^{2}}{\sqrt{r^{2}-x_{P}^{2}}}\ \)

Dal confronto tra  

\( m_{perp-OP}= – \frac{x_{OP}}{\sqrt{r^{2}-x_P^2}}\)

e  

\( m_{OP}= \frac{\sqrt{r^{2}-x_P^2}}{x_{OP}}\)

si evidenzia come un valore sia esattamente l’antireciproco dell’altro.  

Questo corrisponde con la definizione di coefficienti angolari appartenenti a rette parallele, come volevasi dimostrare.